Logic Final Exam Solutions

Published: 2018-01-31 05:24:56
597 words
2 pages
5 min to read
letter-mark
B
letter
University/College: 
Sewanee University of the South
Type of paper: 
Essay
This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

 

Validity: An argument is said to be valid if the truth values for ALL premises are TRUE for EVERY true truth value of the conclusions, that is, the truth values of the conclusion are true for every true premise.

SECTION I: General Concepts

1. False (F)

2. False (F)

3. True (T)

4. True (T)

5. True (T) 

SECTION II: Truth Tables

~ (Negation/ Not) used to negate statements.

V (Disjunction/ Or) connects statements p and q to form compound propositions that are false only if both p and q are false.

  (Material implication/ If…then ) used to form statements p and q which are conditional such that the conditional  statement (s) is false only when q is false and p true.

  (Biconditional connective/ If and only if) which logically connects two statements p and q asserting p iff q with q as a consequent and the antecedent being p.

(Conjunction/ And) which connects statements p and q forming compound propositions such that the propositions are true if and only if p and q are both true.

a) ~A ⊃ (B ∨ A) / B ⊃ A / A // ~A ⊃ B

A

B

~A

B A

~A (B A)

B A

~A B

T

T

F

T

T

T

T

T

F

F

T

T

T

T

F

T

T

T

F

F

F

F

F

T

F

F

T

F

b) The argument ~A ⊃ (B ∨ A) / B ⊃ A / A // ~A ⊃ B is valid since ~A ⊃ B has truth values that are true in EVERY case where ALL of the truth values of A are true.

SECTION III: Rules of Replacement

1. Duplication   4. Equivalence                        7. Commutativity            10.Implication

2. Negation       5. Simplification                     8. Conjunction

3. Dilemma       6. Disjunction Introduction    9. Conditional Exchange

SECTION III: Proofs using Rules of Replacement

1.

1.) (1) (~M ⊃ P)(~N ⊃ Q)

2) ~(MN) /∴ P ∨ Q

(3) ~M ∨ ~N   2 Dem

(4) P ∨ Q         2 Imp

2. 2.) (1) R ⊃ ~B

          (2) D ∨ R

          (3) B /∴ D

          (4) ~~B   3DN 

          (5) ~R     1,2 MT

          (6) R ∨ D 2Com 

           (7) D       2,6DI

3.) (1) ~ ~ ~(O ∨ M)

     (2) ~S /∴ ~M

     (3) ~(O ∨ M)  1DN

     (4) ~O~M  3DeM

     (5) ~M~O  4 Com

      (6) ~M    2-5 IMP

4.) (1) ~(~E~N) ⊃ T

     (2) G ⊃ (N ∨ E) /∴ G ⊃ T

     (3) (~~E ∨ ~~N) ⊃ T  1DeM

     (4) (E ∨ ~~N) ⊃ T 3DN

     (5) (E ∨ N) ⊃ T 4DN

     (6) (N ∨ E) ⊃ T 5Com

      (7) G ⊃ T 2IMP

SECTION IV: Proofs

a.) 1. M ⊃ (U ⊃ H)

     2. (H ∨ ~U) ⊃ F / M ⊃ F

     3. H ∨ ~U 2IMP

     4. F  2MP

     5. H  3SIMP

     6. ~U 3SIMP

     7. M  1 SIMP

     8. M ⊃F

b.) 1. ~H ⊃ B 

     2. ~H ⊃ D 

     3. ~(B • D) / H

     4. B • D 3IMP

     5. B 4SIMP

     6. D 4SIMP

     7. ~H  1,5MP

     8. ~ ~H 7DN

     9. H

sheldon

Request Removal

If you are the original author of this essay and no longer wish to have it published on the SpeedyPaper website, please click below to request its removal: